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Abstract—The objective of this short article is to propose
a research orientation to address the international Knowledge
Graph Reasoning Challenge (IKGRC). The IKGRC consists in
solving mysterious crimes and providing a reasonable explanation
based on open knowledge graphs, which represent the case,
background, and characters of some Sherlock Holmes novels.

The suggestion of this paper is to use the framework of the
belief functions, well adapted to the consideration of different
uncertainties and the management of conflicting information.

Index Terms—Knowledge Graph, Belief Functions, Treatment
of Uncertainties

I. INTRODUCTION

Different types of uncertainty can disturb reasoning over
a knowledge graph: a) aleatory uncertainty, i.e., intrinsic to
the hazard of a phenomenon, or b) epistemic uncertainty, i.e.,
resulting from a lack of knowledge or data. Let us note that
conflict between several sources is one possible cause of un-
certainty. In the IKGRC1, epistemic uncertainty can arise from
the incompleteness of the graph, low granularity or imprecise
statements, like a partial description of the culprit in witness
testimony. On the other hand, aleatoric uncertainty arises when
some statements can be untrue. An adapted framework could
allow us to take greater advantage of information affected by
uncertainty.

II. REASONING UNDER UNCERTAINTY

In the past, several frameworks have been proposed to
represent and deal with uncertainty such as the probability
theory, the imprecise probabilities, the belief function theory,
the possibilities, or the fuzzy logic. Some of these frameworks
have been used for reasoning over a knowledge graph. For
example, several works focus on reasoning over Knowledge
graphs in the presence of fuzziness, i.e., variables may be true
to a certain degree comprised in [0,1]. In [1] an approach
is proposed to achieve reasoning with general terminologi-
cal axioms in fuzzy description logic. On another note, [2]
provides a logical query embedding framework for answering
complex logical queries on knowledge graphs. In the frame-
work of classical probabilities, [3] presented a Markov logic
network-based approach for reasoning over uncertain temporal
knowledge graphs.

1https://ikgrc.org/2023/index.html

To our knowledge, there is not yet a knowledge graph
reasoning approach proposed in the framework of the belief
functions. However, such an approach could allow for jointly
managing both types of uncertainty. Moreover, this framework
has rich literature on the subject of information fusion, and
thus allows for possible ways of reasoning in the presence of
conflicting information.

Let us briefly introduce the belief functions theory, also
called Dempster Shafer theory [4], [5]. This theory has been
used in various domains including the semantic web [6], and
ontology [7]. Due to the additivity constraint inherent to the
definition of a probability distribution, one cannot build a
unique probability distribution when measures, observations,
etc. imprecise, i.e., are affected by epistemic uncertainty.
Belief functions theory, as an extension of probability theory,
allows masses to be assigned to imprecise data or sets.
Denoting the universe by Θ, a mass function, also called basic
belief assignment (bba), is a set function m : 2Θ → [0, 1]
satisfying ∑

A⊆Θ

m(A) = 1. (1)

For a set A ⊆ Θ, the quantity m(A) is interpreted as
the mass of belief allocated exactly to the set A and not to
more specific subsets of A. Let us illustrates the meaning
of a mass function through an example borrowed from [8]
originally inspired by [9]. We suppose that a murder has been
committed and that there are three suspects: Peter, John, and
Mary. We set then Θ = {Peter, John, Mary}. We further
suppose that a witness has seen the culprit running away. Since
the witness is short-sighted, he could only testify that the
culprit is a man (epistemic uncertainty). Moreover, this witness
was drunk at the time which makes this evidence true with
reliability 0.8 (aleatoric uncertainty). The evidence provided
by this witness is then represented with the mass function
defined by m1({Peter, John}) = 0.8, m1(Θ) = 0.2. A
mass function induces two other set functions that can be
used to make inference. First, the belief function Bel : 2Θ →
[0, 1], which quantifies the total belief in A as the sum of
all masses of subsets of A: Bel(A) =

∑
B⊆Θ,B⊆A m(B).

Second, the plausibility function of A, Pl : 2Θ → [0, 1],
which quantifies the maximum mass that could be allocated
to A: Pl(A) =

∑
B⊆Θ,B∩A ̸=∅ m(B).

https://ikgrc.org/2023/index.html


One of the most important benefits of the framework of
belief functions is the ability to combine different information
from several sources. The most popular combination procedure
used in the framework of belief functions is Dempster’s
combination (conjunctive combination) which assumes that
all sources of information are independent and reliable and
completely ignores the conflict between them. In order to com-
bine two mass functions m1,m2, the Dempster combination,
denoted ⊕ is defined as follows

m1⊕m2(A) =


0 if A = ∅,

1

1−K

∑
B∩C=A̸=∅

m1(B)m2(C) elsewhere,

(2)
where the K =

∑
B∩C=∅ m1(B)m2(C) measures of the

amount of conflict between m1 and m2. Let us continue the
example from [8]. Now we suppose that a blond hair was
found on the crime scene and that the room was cleaned
before the crime with a probability 0.6. This new piece
of evidence is represented by the following mass function
m2: m2({John,Mary}) = 0.6,m2(Θ) = 0.4. When
combining the two pieces of evidence with Dempster’s rule,
we obtain m({John}) = 0.48, m({Peter, John}) = 0.32,
m({John,Mary}) = 0.12, m(Θ) = 0.08. Let us note
that this combination tightens the mass on the intersections
(loss of imprecise information). This combination can
therefore be risky, especially when the degree of conflict is
important. One other very used masses combination is the
disjunctive combination, which also assumes that the sources
of information are independent, but which is suitable for
situations where at least one source of information is reliable.
Other combinations have been proposed to meet particular
situations of information sources. Let us cite the conjunctive
combination of Smets [10], the conjunctive combination of
Yager [11], the disjunctive combination of Dubois [12] etc.

To benefit from the many modeling and inference tools of
the belief functions framework in the situation where sources
of information are given by a knowledge graph, we suggest
relying on the basic theory of Uncertain Logic Processing
(ULP) presented in [13]. ULP permits the management of
information given in the form of first-order logic formulas
subject to uncertainty, where the uncertainty is expressed in
the belief functions framework. In the same article, the authors
suggest a way to extend the concept of the satisfiability (SAT)
problem into ULP.

The idea for reasoning in the belief functions framework
over knowledge graphs is the following. First, the relevant
triplets in the graph are extracted and interpreted as uncertain
first-order logic formulas. Then ULP is used to generate
mass function assignments based on the uncertain first-order
logic formulas. To do so, the uncertainty associated with
each formula should be made explicit. To us, capturing this
uncertainty directly from the knowledge graph is still an open
question. However, one could use external knowledge such as
”If the witness knows the person he/she saw, then he/she is

right with a probability p” (aleatoric uncertainty). Concerning
the consideration of epistemic uncertainty, we could take
advantage of an external ontology to capture the level of
precision of an object or a subject.

One more global idea is to label each triplet with a source
tag like ”testimony of Helen” or ”observation at the scene of
the crime”. Then, using the belief function framework, identify
which sources, e.g., characters, are the most in conflict with
the others or inconsistent with the facts. The labeling of the
sources could be achieved by NLP or machine learning on the
original sentences in the novels.

III. CONCLUSION

The idea presented in this paper is to propose an approach
in the framework of belief functions allowing to represent
and manage both aleatoric and epistemic uncertainty when
reasoning on a knowledge graph.

Being able to take into account these two types of un-
certainty could be useful to improve the expressiveness of
reasoning models on knowledge graphs. The IKGRC problem
is all the more adapted to this research direction, as it implies
many sources of information to be processed and confronted
to deduce the solution.
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